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[1] Pressure recovery in magma subject to sudden
depressurization is investigated in terms of the growth of
bubbles containing magmatic volatiles. Assuming
conservation of volatile mass and pressure equilibration
between the bubbles, melt and a surrounding elastic medium,
the final magma pressure is completely determined by its
initial pressure and the magnitude of the pressure drop.
Simulations show that the initial magma pressure is easily
recovered, or even exceeded, when magma containing tiny
bubbles is surrounded by a relatively stiff elastic medium
under low confining pressure. This result suggests that when
processes such as magma withdrawal, dike intrusion, and
nearby seismicity decrease the pressure in a magma chamber,
magma re-pressurization can occur without new injection of
magma. INDEX TERMS: 8414 Volcanology: Eruption

mechanisms; 8439 Volcanology: Physics and chemistry of magma

bodies; 8434 Volcanology: Magma migration; 8499 Volcanology:

General or miscellaneous. Citation: Nishimura, T. (2004),

Pressure recovery in magma due to bubble growth, Geophys. Res.

Lett., 31, L12613, doi:10.1029/2004GL019810.

1. Introduction

[2] To interpret the spatial and temporal changes in
magmatic sources beneath active volcanoes, which have
been determined precisely by geodetic and seismological
means, it is necessary to first elucidate the forces that
control the motion of magma. Buoyancy forces are the
most probable candidates for the principal driving force, but
may not explain all observed magma migration processes,
such as horizontal dike intrusion or intermittent movements.
The triggering of long-period seismic tremor has been often
interpreted in terms of sudden vesiculation, but few quan-
titative analyses have been made to date. This study sheds
light on the growth of volatile bubbles in magma, which has
been studied to understand natural geologic samples, as
another important candidate for the forces driving magma
movement. By incorporating crustal elasticity into the
bubble growth model proposed by Proussevitch et al.
[1993], in which multiple bubbles of constant radius are
closely packed within the melt, we analyze magma chamber
re-pressurization in response to sudden depressurization
caused. We envisage the likely mechanisms of depressur-
ization to include dike injection, plug opening of a volcanic
pipe, and stress changes induced by nearby earthquakes.
[3] The notation and values used for pressure, volume,

bubble radius, and other physical parameters are listed at the
end of the text and in Table 1. This study uses water for the
volatiles in magma.

2. Pressure Recovery Due to Bubble Growth

[4] In this model, the magma chamber—either a dike or a
volcanic pipe—is embedded in an infinite elastic medium,
and the magma itself is treated as melt plus numerous small
spherical gas bubbles (Figure 1a). The dike width or pipe
radius is assumed to be much larger than the size of each
bubble. The melt is a compressible liquid saturated with
volatiles, which are presumed to behave as a perfect gas.
For simplicity, gravitational and other body forces are
neglected. The magma in the chamber and the surrounding
elastic medium are initially subject to a uniform confining
pressure Ps.
[5] When the magma chamber is depressurized, in

response, for example, to the withdrawal of a proportion
of the melt or nearby seismicity, the pressure in the melt
decreases within a few tens of seconds as a pressure wave
propagates through the chamber. Since the rate of growth of
the gas bubbles is controlled by viscosity, diffusivity and
pressure differences [e.g., Proussevitch et al., 1993], the gas
bubbles maintain their original pressure longer than the
enclosing melt (Figure 1b). In this study, therefore, the
instantaneous pressure drop, DP0, in the magma is pre-
sumed to occur in a much shorter time than bubble growth.
[6] Immediately after the magma is depressurized, the

pressure of the melt is balanced by the ambient pressure
minus the pressure drop:

Pl0 ¼ Ps � DP0; ð1Þ

On the other hand, the gas bubbles maintain their initial
pressure:

Pg0 ¼ Ps þ 2s=rg0; ð2Þ

where s is the surface tension and rg0 the initial bubble
radius. Equations (1) and (2) represent the initial condition
for the pressures of the melt and gas bubbles, respectively.
With time, the gas bubbles increase in radius due to the
pressure gradient built up between the bubbles and ambient
melt (Figure 1c). Bubble growth ultimately stops when the
pressures of the gas and melt reach an equilibrium
expressed as:

Pgf ¼ Plf þ 2s=rgf ; ð3Þ

Given the necessary conservation of mass, the total mass of
volatiles in the magma remains the same throughout the
bubble growth stage, in which case:

4

3
pngrgf r

3
gf ¼ rl0 C0 � Cf

� �
1� 4

3
pngr3g0

� �
þ 4

3
pngrg0r

3
g0: ð4Þ

GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L12613, doi:10.1029/2004GL019810, 2004

Copyright 2004 by the American Geophysical Union.
0094-8276/04/2004GL019810$05.00

L12613 1 of 4



Here it is assumed that no new bubbles are created and that
the gas density is negligibly small compared with the melt
density. For water dissolved in silicate melt, the volatile
concentration can be expressed by Henry’s law:

C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KHPg0

p
; Cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KHPgf

p
; ð5Þ

where the gas pressures in the melt are related by

Pg0

rg0
¼ Pgf

rgf
¼ RT

M
: ð6Þ

Temperature is assumed to be constant throughout the
bubble growth process. Since the melt is compressible, the
final melt pressure is related to the melt’s volume change
via the bulk modulus, Kl:

Plf ¼ Pl0 � Kl
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The pressure of the melt is balanced by the stress applied by
the surrounding elastic medium. When the magma occupies
a two-dimensional crack of length L and volume per unit
length S0, the initial and final pressures in the melt are
related to the deformation of the crack [e.g., Okamura,
1990]:

Plf � Pl0 ¼ m
Vf

V0

� 1

� �
; ð8Þ

where

m ¼ 2mS0
p 1� vð ÞL2 : ð9Þ

In the case of a volcanic pipe, this is expressed by:

Plf � Pl0 ¼ 2m
ffiffiffiffiffi
Vf

V0

r
� 1

� �
ð10Þ

The pressure difference Plf � Pl0 represents pressure
recovery due to gas bubble growth after an instantaneous
pressure drop of DP0.

3. Simulation Results

[7] Pressure recovery and the final gas bubble radius are
calculated by substituting the initial gas bubble radius,

bubble density, pressure drop, and various physical param-
eters of magma into equations (1)–(10). We use param-
eters appropriate for rhyolitic magmas as summarized in
Table 1, most of which are taken from Table 2 of
Proussevitch et al. [1993]. Only the results for the case
of a crack are shown below, although the basic character-
istics of pressure recovery are the same for other magma
chamber geometries.
[8] Figures 2 show the relationship of the pressure

recovery, Plf � Pl0, and final bubble radius, rgf, to initial
pressure drop, DP0, for rhyolitic magma. In our calcula-
tions, rg0 = 10�5–10�6 m, S0/L

2 = 0.1–0.01, Ps = 75 MPa
and ng = 108/m3 are assumed. When the pressure drop is
small, the pressure drop is sometimes exceeded by the
subsequent pressure recovery. This over-pressurization is
mainly caused by pressure release from the surface tension
of gas bubbles (see equations (2) and (3)). On the other
hand, when the pressure drop is large, the magma pressure
does not totally recover, probably because the total amount
of volatiles dissolved in the melt is insufficient to fill the gas
bubbles and attain the initial pressure. We note that the
effective rigidity of the elastic medium surrounding the
magma chamber, m, plays a significant role in the pressure
recovery and final bubble radius: as the effective rigidity
decreases (i.e., small S0/L

2 for a crack or small m for a pipe),
the pressure recovery also decreases and the final bubble
radius increases.
[9] Magma having a large Henry’s constant can generally

generate a large volume of volatiles (water) from the melt
for bubble growth and pressurization. Although Henry’s
constant for rhyolitic magma is about two times larger than

Table 1. Properties of Magma and the Surrounding Elastic

Medium

Property Symbol Rhyolite Magma

Henry’s constant KH 1.6 � 10�11/Pa
Melt density rl 2200 kg/m3

Surface tension s 0.32 N/m
Bulk modulus of melt Kl 1.38 � 1010 Pa
Temperature T 1300 K
Gas constant R 8.31 J/K/mol
Bubble density ng 108/m3

Molecular weight of water M 0.018 kg/mol
Elastic rigidity m 1.1 � 1010 Pa
Poisson’s ratio v 0.25

Figure 1. Schematic illustration of an idealized magma
chamber and its response to sudden depressurization.
(a) Magma containing numerous gas bubbles. (b) Volumetric
expansion and pressure drop (L > L0). (c) Re-pressurization
of the magma due to gas bubble growth.
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that for basaltic magma (9.0 � 10�12/Pa), the difference is
too small to cause a significant changes in the pressure
recovery. Bubble density has little effect on pressure
recovery, although larger final bubble radii are attained
when the bubble density is low.

4. Discussion

[10] When the stress intensity factor of a crack exceeds a
critical value characteristic of the enclosing medium, the
crack extends in length [e.g., Aki et al., 1977] and the total
volume of magma increases. Similar volumetric expansion
is also expected when excess pressure stored in a magma
causes the opening of a plug or volcanic conduit. In both
these processes, the magma remaining in the original
chamber is ultimately depressurized due to the partial
withdrawal of some magma. This implies that when no
additional magma is supplied, bubble growth processes are
necessary to pressurize magma chamber and to permit
further magma migration. The regions beneath each curve
in Figure 3 represent initial bubble radius and pressure drop
combinations for which the pressure recovery is larger than
the triggering pressure drop. For example, in response to a
pressure drop of 1 MPa at a confining pressure of 100 MPa,

magmas containing gas bubbles smaller than 3 � 10�5 m in
radius will be completely re-pressurized. This highlights the
importance of small initial bubble radii in enabling magmas
to fully recover from pressure drops at high confining
pressure.
[11] This model of pressure recovery associated with

bubble growth may be relevant to intermittent dike
intrusions observed at active volcanoes [e.g., Okada and
Yamamoto, 1991; Fujita et al., 2002]. Sudden discharges of
large bubbles accumulated beneath the roof of a chamber,
which have been interpreted as a trigger for repeated
eruptions at Stromboli volcano [e.g., Ripepe et al., 2001]
might cause a pressure build-up within the chamber and
thereby control eruption dynamics. The triggering of
magmatic oscillations that generate VLP and LP seismic
events [e.g., Arciniega-Ceballos et al., 1999; Nishimura et
al., 2002] may likewise be related to bubble growth in the
magma. For example, when a pressure in magma decreases
0.1 MPa, which is likely to occur when 0.001% of magma
volume is withdrawn from a thick crack located at a depth
of 3000 m (about 75 MPa confining pressure) due to a
crack opening or plug opening, over-pressurization of about
0.6 MPa is expected to occur in magma containing gas
bubbles with an initial radius of 10�6 m and ng = 108/m3

(see Figure 3). The time scales for bubble growth processes
studied by Proussevitch et al. [1993], which vary from less
than a few seconds to more than 10 days for basaltic and
rhyolitic magmas, are within the range of the observed
phenomena. These results suggest that the pressure recovery
and increase predicted from the model in this study is
enough to cause a new withdrawal of magma and/or to
excite volcanic earthquakes and tremor. However, since
this model neglects the time factors and gravitational force,
it is necessary to include these effects in the model for
discussing the observed phenomena more in detail.
[12] Bubble growth in magma also plays an important

role on the magma fragmentation and eruption dynamics.
For example, a specific value of vesicularity (0.70–0.75)

Figure 3. Graph showing the relationship between initial
bubble radius and pressure drop satisfying the condition
Plf � Pl0 = DP0 for confining pressures of 25, 50, 75,
and 100 MPa. The area below each curve represents
combinations of initial bubble radius and pressure drop for
which the re-pressurization more than compensates for the
pressure drop.

Figure 2. Graph showing pressure recovery and final
bubble radius in response to a pressure drop applied to
rhyolitic magma in a crack. The solid and dotted lines
represent thick (S0/L0

2 = 0.1) and thin cracks (S0/L0
2 = 0.001),

respectively. The results for two different initial bubble radii
(10�5 m and 10�6 m) are plotted. In both cases, Ps = 75 MPa
and ng = 108/m3. The gray line represents the pressure
recovery equal to the pressure drop, and an over-
pressurization is expected for the case where the solid and
dotted lines are above the gray line.

L12613 NISHIMURA: PRESSURE RECOVERY IN MAGMA DUE TO BUBBLE GROWTH L12613

3 of 4



has been often used for magma fragmentation level to
understand the explosivity of eruption [e.g., Mader, 1998].
Such fragmentation level is easily obtained when magma
ascends in a rigid conduit (i.e., magma is not stressed from
the conduit) if no degassing occurs during the ascent. On the
other hand, when a magma batch ascends in an elastic
conduit, the bubble growth is expected to be suppressed.
From this model, the vesicularity in magma is roughly
estimated to be less than 0.75 for the surrounding medium
with m � 4.7 � 106 Pa, when a magma batch ascends from a
depth of 5 km to the ground surface, which corresponds to a
depressurization of about 130 MPa. This implies that
magma can migrate to the surface without fragmentation
even if no gas is escaped from the magma.
[13] The ultimate strain energy produced in the elastic

medium is larger than the initial strain energy because of
magma chamber re-pressurization. This strain energy is
supplied by the thermal energy of the melt. Although the
energy equation must be solved in order to analyze the
energy balance in detail, the assumption of constant
temperature made in this study means that the results
would not be significantly different. For example, magma
increasing in pressure by 1 MPa within a 10 m radius
volcanic pipe produces an increase in elastic strain energy
of about 7 � 104 J per unit length of the conduit. This
amount is approximately 104 times smaller than the release
of thermal energy associated with a 1 K decrease
in temperature of a magma having a heat capacity of
1.3 � 103 J/kg/K. Such small changes in temperature
hardly affect the bubble growth process analyzed in this
study.

5. Summary

[14] Pressure recovery in a magma subjected to a sudden
drop in confining pressure has been modeled by taking into
account bubble growth in a compressible melt surrounded
by an elastic medium. This model predicts that initial
magma pressure is totally recovered or exceeded without
any new magma being supplied to the chamber when the
initial bubble radius is small, the surrounding elastic
medium is rigid, and/or the confining pressure is small.

Notation

C concentration (kg water/kg melt)
P pressure
r bubble radius
V magma volume

Subscripts
0 initial condition
f final condition
l melt
g gas
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