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S U M M A R Y
The finite difference method is used to calculate the magma dynamics, seismic radiation, and
crustal deformation associated with a volcanic eruption. The model geometry consists of a
cylindrical reservoir and narrow cylindrical conduit embedded in a homogeneous crust. We
consider two models of eruption. In the first model, a lid caps the vent and the magma is
overpressurized prior to the eruption. The eruption is triggered by the instantaneous removal
of the lid, at which point the exit pressure becomes equal to the atmospheric pressure. In
the second model, a plug at the reservoir outlet allows pressurization of only the magmatic
fluid in the reservoir before the eruption. Magma transfer between the reservoir and conduit is
triggered by the instantaneous removal of the plug, and the eruption occurs when the pressure
at the conduit orifice exceeds the material strength of the lid capping the vent. In both models,
magma dynamics are expressed by the equations of mass and momentum conservation in a
compressible fluid, in which fluid expansion associated with depressurization is accounted for
by a constitutive law relating pressure and density. Crustal motions are calculated from the
equations of elastodynamics. The fluid and solid are dynamically coupled by applying the
continuity of wall velocities and normal stresses across the conduit and reservoir boundaries.
Free slip is allowed at the fluid–solid boundary. Both models predict the gradual depletion of
the magma reservoir, which causes crustal deformation observed as a long-duration dilatational
signal. Superimposed on this very-long-period (VLP) signal generated by mass transport are
long-period (LP) oscillations of the magma reservoir and conduit excited by the acoustic
resonance of the reservoir–conduit system during the eruption. The volume of the reservoir,
vent size, and magma properties control the duration of VLP waves and dominant periods of
LP oscillations. The second model predicts that when the magmatic fluid reaches the vent, a
high-pressure pulse occurs at this location in accordance with the basic theory of compressible
fluid dynamics. This abrupt pressure increase just beneath the vent is consistent with observed
seismograms in which pulse-like Rayleigh waves excited by a shallow source are dominant.
The strength of the lid plays an important role in the character of the seismograms and in
defining the type of eruption observed.

Key words: crustal deformation, fluid dynamics, magma, numerical techniques, seismic-wave
propagation.

I N T RO D U C T I O N

Seismic and geodetic measurements around active volcanoes are
very useful for a quantitative evaluation of volcanic activity. Recent
seismic and geodetic data recorded on dense networks of stations
have shed light on the force system associated with volcanic erup-
tions. For example, Kanamori et al. (1984) analysed explosion earth-
quakes associated with eruptions of Mount St Helens and showed
that these earthquakes were excited by a downward-oriented vertical

single force. They interpreted the source mechanism of the single
force as a counter force associated with the sudden removal of a
lid capping a pressurized fluid-filled cavity located at shallow depth
beneath the volcano. Uhira & Takeo (1994) used a moment-tensor
inversion technique to analyse seismic signals associated with vul-
canian explosions at Sakurajima Volcano, Japan. They showed that
volcanic explosions at Sakurajima are accompanied by the contrac-
tion of a magma chamber at a depth of a few kilometers. Nishimura
(1998) considered the deflation process of a magma chamber
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connected to the surface by a narrow conduit as a seismic source of
explosion earthquakes, and obtained a mathematical description of
the observed relation between seismic magnitude and vent radius.
These studies strongly suggest that an explosive volcanic eruption
macroscopically can be represented by the deflation process of a
reservoir system beneath a volcano.

Seismic observations made close to volcanoes provide fur-
ther details of the spatio-temporal properties of these explosive
sources. Based on analyses of seismic data and video pictures
obtained at Sakurajima Volcano, Japan, Ishihara (1990) demon-
strated that an explosive eruption is preceded a few seconds be-
fore by an initial break at a depth of about 2 km beneath the
summit crater. Using moment-tensor inversions, Tameguri et al.
(2002) suggested that large-amplitude surface waves are generated
from the top of the conduit simultaneously with an explosion at the
vent.

Long-period (LP) signals in the form of eruption tremor are often
observed at many volcanoes during a sustained eruption. Using spec-
tral analyses, Nishimura et al. (1995) showed that eruption tremor
observed during the 1989 eruption of Mount Tokachi, Japan, has
a source mechanism similar to that of explosion earthquakes. Mc-
Nutt (1994) summarized the characteristics of eruption tremor ob-
served around the world and showed that the reduced displacement
(Aki & Koyanagi 1981) of eruption tremor, which is an indication
of the power of the tremor source, is proportional to the Volcanic
Explosion Index (VEI), which is related to the amount of erupted
materials. Although many source models have been proposed to ex-
plain the narrow spectral peaks of LP seismicity (Crosson & Bame
1985; Chouet 1985, 1986, 1988, 1992, 1996; Chouet et al. 1994;
Ferrick et al. 1982; Fujita et al. 1995; Kumagai & Chouet 1999,
2000, 2001; Mikada 1992), few source models treat the eruption
tremor.

Geodetic measurements made close to a volcano also yield in-
formation on mass transport processes beneath a volcano. From
an analysis of high-sensitivity tilt and strainmeter records obtained
in a vault located 2.7 km from the crater of Sakurajima, Ishi-
hara (1990) found that an inflation of the volcano precedes each
explosive eruption by a few hours. The tilt and strainmeter data
also show a deflation of the volcano after each eruption. Similar
deformation signals associated with volcanic explosions were de-
tected by a strainmeter during the 1988–1989 activity of Mount
Tokachi (Miyamachi et al. 1990), and by a tiltmeter located 1.5
km from the active vent of Mount Etna, Italy (Bonaccorso & Davis
1999). Broad-band seismometers deployed near the active vent of
Aso Volcano, Japan, recorded the inflation and deflation phases as-
sociated with small phreatic eruptions (Kaneshima et al. 1996).
Broad-band recordings illustrating inflation and deflation phases
accompanying eruptions of Stromboli Volcano, Italy, were obtained
by Chouet et al. (1999, 2003). Similar broad-band measurements
were shown to accompany vulcanian explosions at Popocatepetl
Volcano, Mexico (Arciniega-Ceballos et al. 1999). Although the
mechanisms of inflation phases detected by geodetic and seismic
measurements may not necessarily originate in the same physical
process, these observations show that most volcanic eruptions are
associated with an initial inflation phase, followed by a deflation
process accompanying the eruption of volcanic materials from the
vent.

Several source models have been proposed to explain these char-
acteristics of observed seismic and geodetic signals. In most models
the magmatic fluid is simplified to an incompressible liquid or per-
fect gas, and small pressure fluctuations are assumed to make the
mathematical treatment of the fluid dynamics and elastodynamics

more tractable. In the case of an eruption, however, it is necessary to
take into account the pressure dependence of magma properties as
magma migrates toward the surface because the dominant period of
seismic waves excited by a pressure transient in a volcanic conduit
is strongly affected by the depth dependence of magma properties
(Neuberg 2000). The discharge of magma is another critical param-
eter describing eruptive activity. Several constitutive relationships
between fluid pressure and fluid density accounting for the vesic-
ulation process of gases in liquid magma have been proposed to
quantitatively evaluate flow motions in a volcanic conduit (Wilson
et al. 1980; Ida 1990; Bower & Woods 1997). These studies gener-
ally focus on the dynamics of magma motion only, and do not target
the seismic radiation and crustal deformation, which represent the
most informative data about underground magma dynamics. The
purpose of the present study is to fill this gap in our knowledge. We
use numerical simulations to simultaneously estimate the dynamics
of magma flow in the conduit and reservoir, and associated crustal
deformation and seismic radiation during a volcanic eruption. Us-
ing the coupled equations of fluid dynamics and elastodynamics, we
examine the basic characteristics of magma motions and associated
elastic displacement field in the surrounding solid.

M AT H E M AT I C A L F O R M U L AT I O N
O F A V O L C A N I C E RU P T I O N

We assume the simplified volcanic system illustrated in Fig. 1 to
examine the magma motion and seismic wave radiation associated
with an eruption. The conduit–reservoir system consists of a magma
reservoir connected to the surface by a narrow vertical conduit. The
reservoir has a cylindrical shape with radius r v and length �v , and
the conduit consists of an axially symmetric pipe with radius rc

and length �c. Before an eruption, a lid representing a lava dome or
solidified volcanic plug covers the conduit orifice.

We examine two models of eruption. Our first model (hereafter
named Model I) is based on the simple model proposed by Kanamori
et al. (1984) and Nishimura (1998). In this model, the reservoir and
conduit are both simultaneously pressurized by the addition of new
magma to the system, and the fluid is further gravitationally pressur-
ized by its own weight. Accordingly, the volcanic crust surrounding
the reservoir–conduit system is stressed by the pressure exerted by
the magma in the conduit and reservoir, resulting in an inflation
of the crust in the vicinity of the conduit and reservoir. An erup-
tion is triggered by the instantaneous removal of the lid capping the
conduit orifice. Magma migrates upward in response to the pres-
sure gradient established between the reservoir and atmosphere, and
crustal deformation and seismic wave radiation are generated by the
migration of magmatic fluid and associated deflation of the reser-
voir. We calculate the motions of the fluid and surrounding medium
by using the basic equations of compressible fluid dynamics and
elastodynamics.

In our second model (hereafter named Model II), we assume
a plug at the reservoir outlet. The fluid in the conduit and reser-
voir is gravitationally pressurized by its own weight. Before an
eruption, new magma is supplied to the reservoir only, leading to
additional pressurization of the reservoir because of the presence
of the plug, which restricts magma transfer from the reservoir to
the conduit. Magma motions in the reservoir–conduit system, and
associated crustal deformation, are triggered by the instantaneous
removal of the plug. Magma migrates upward in response to the
pressure gradient between the reservoir and conduit. As the pres-
sure wave triggered by the plug removal reaches the conduit orifice,
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Figure 1. Configuration of the conduit–reservoir system and observation
points used in the simulation.

a high-pressure pulse is generated at this location. This pressure
pulse exceeds the material strength of the lid, causing the instan-
taneous rupture of the lid and triggering an eruption. The upward
migration of magma is then controlled by the pressure gradient es-
tablished between the reservoir and atmosphere. Motions of the fluid
and surrounding medium are calculated in the same manner as in
Model I.

C A L C U L AT I O N O F M A G M A M O T I O N

We apply the equations of momentum and mass conservation, and
a constitutive relation between fluid pressure and fluid density, to
calculate the motion of the magmatic fluid in the reservoir–conduit
system. An axially symmetric flow of inviscid magma is assumed.
The equations of momentum conservation in cylindrical coordinates
are expressed as

∂vr
∂t + vr

∂vr
∂r + vz

∂vr
∂z = − 1

ρ f

∂p
∂r ,

∂vz
∂t + vr

∂vz
∂r + vz

∂vz
∂z = − 1

ρ f

∂p
∂z − g, (1)

and the equation of continuity is

∂ρ f

∂t
+ ∂

∂r
(ρ f vr ) + ∂

∂z
(ρ f vz) + ρ f vr

r
+ ρ f

V

∂V

∂t
= 0, (2)

where ρ f is the fluid density, vr and vz are the radial and vertical
components of flow velocity, respectively, p is the pressure, and g
is the gravitational acceleration. The rightmost partial derivative,
∂V /∂t , in the lefthand side of eq. (2) expresses the rate of vol-
ume change of the conduit and reservoir system associated with the
variation of flow pressure. The term (1/V )∂V /∂t is given by

1

V

∂V

∂t
= 2

rc

∂urc
∂t + 1

(�c + �v)
∂uzb
∂t for 0 < r < rc

and 0 < z < �c,

1

V

∂V

∂t
= 2

rv

∂urv

∂t + 1
(�c + �v)

∂uzb
∂t for 0 < r < rc

and �c < z < �c + �v,

1

V

∂V

∂t
= 2

rv

∂urv

∂t + 1
�v

∂(uzb − uzt )
∂t for rc < r < rv

and �c < z < �c + �v,

where uzt and uzb are the displacements of the top and bottom of the
reservoir, respectively, and urc and urv are the displacements of the
lateral walls of the conduit and reservoir, respectively.

When the magmatic fluid is depressurized due to upward migra-
tion, the bulk density of the fluid decreases because of the vesicu-
lation process of volatile gases in solution in the liquid magma. To
take this effect into account, a constitutive relation between the fluid
pressure and fluid density is necessary. Most previous studies (e.g.
Wilson et al. 1980; Ida 1990; Bower & Woods 1997) formulate this
constitutive relation by applying Henry’s law for volatile gases. The
present study uses the constitutive relation proposed by Ida (1990),
which is expressed as

ρm

ρ f
= 1 − β + β

(
p0

p

)
, (3)

where ρm is the density of the liquid magma, and p0 is the pressure at
which the volatiles start to vesiculate. We define the depth at which
vesiculation starts as zm = p0/(ρm g). The parameterβ represents the
magma property, with β = 0.5 representing a basaltic magma, and
β = 1.0 representing a dacitic magma. This formulation enables us
to easily calculate the density and pressure of the fluid reciprocally.

We solve eqs (1)–(3) by the finite difference method of MacCor-
mack (e.g. Anderson 1995) to obtain the spatio-temporal variations
of pressure and velocities in the magmatic fluid.

C A L C U L AT I O N O F C RU S TA L
D E F O R M AT I O N A N D S E I S M I C
WAV E R A D I AT I O N

We assume that the volcanic crust surrounding the conduit–reservoir
system is perfectly elastic. Accordingly, the displacement field in
the crust is expressed by the equations of motion in cylindrical
coordinates

ρs
∂2ur

∂t2 = ∂τrr
∂r + ∂τr z

∂z + τrr − τφφ

r ,

ρs
∂2uz

∂t2 = ∂τr z
∂r + ∂τzz

∂z + τr z

r
+ ρs g,

(4)

C© 2003 RAS, GJI, 153, 699–718



May 12, 2003 15:47 Geophysical Journal International gji1936

702 T. Nishimura and B. Chouet

and the stress–strain relations for isotropic medium

τr z = µ
(

∂ur
∂z + ∂uz

∂r

)
,

τrr = λ
(

∂ur
∂r + ∂uz

∂z + ur
r

)
+ 2µ

∂ur
∂r ,

τzz = λ
(

∂ur
∂r + ∂uz

∂z + ur
r

)
+ 2µ

∂uz
∂z ,

τφφ = λ
(

∂ur
∂r + ∂uz

∂z + ur
r

)
+ 2µ

ur
r ,

(5)

where ui is the i-th component of displacement, ρs is the density of
the solid, τ i j are the components of stress, and λ and µ are the Lamé
coefficients.

We evaluate eqs (4) and (5) by extending the second-order stag-
gered finite difference scheme of Ohminato & Chouet (1997) to
the axially symmetric configuration of our model. The method of
Ohminato & Chouet (1997) has the advantage that the topographic
configuration and inhomogeneity of the elastic structure can easily
be implemented in the model. For the time being, however, we limit
our consideration to a homogeneous half space with flat free surface
in order to examine the basic characteristics of crustal deformation
and seismic wave propagation associated with magma motions.

B O U N DA RY A N D I N I T I A L
C O N D I T I O N S

The magmatic fluid forces the walls of the conduit and reservoir
either inward or outward, and no vacuum is allowed at the boundary
between the fluid and crust at all times. Hence, the stresses normal
to the conduit and reservoir walls are always balanced with the mag-
matic pressure, and the radial velocity of the magmatic fluid at the
wall is set equal to the radial velocity of the wall. The radial veloc-
ity of the elastic wall is obtained by time derivating the calculated
radial displacement of the wall. We assume a free slip condition at
the conduit and reservoir walls in accordance with our assumption
that the magma is an inviscid fluid.

The initial conditions of the magmatic fluid and elastic solid are
obtained by considering the gravitational load due to the weight of
the fluid in the conduit–reservoir system, and an additional excess
pressure, �P. In Model I, �P represents the overburden pressure
applied by the lid obstructing the vent. This pressure is taken as
the orifice pressure. In Model II, �P is applied only to the fluid in
the reservoir, and represents the excess pressure associated with the
influx of new magma originating from deeper regions. The pressure
in the fluid at depth z and time t < 0 is given by

p(z; t < 0) =
z∫

0

ρ(z′)g dz′ + patm, for 0 < z < zt ,

p(z; t < 0) = p(zt ) + �P +
z∫

zt

ρ(z′)g dz′, for z > zt , (6)

in which z′ is the integral parameter representing depth, and patm

represents the atmospheric pressure. The depth zt = 0 in Model I,
and zt = �c in Model II, where �c is the depth to the reservoir
outlet. The initial condition of the displacement field in the crust
is calculated with eqs (4) to (6), in which we apply the boundary
conditions between the fluid and solid. The explicit forms of the
finite difference equations in the solid and fluid, and grid geometries
used in our calculations are given in Appendix A.

In Model I, an eruption is triggered at t = 0 by setting the magma
pressure at the conduit orifice equal to the atmospheric pressure. In

Model II, fluid motion is triggered at t = 0 by removing the plug to
allow the magma transfer between the reservoir and conduit. In both
models, we calculate the spatio-temporal dependences of pressure
and velocities in the fluid, and displacements and stresses in the solid
as follows: (1) using eqs (1) to (3), fluid motions in the conduit and
reservoir are estimated at time t = δt from the fluid motions at t = 0;
(2) elastic motions are calculated at t = δt from the elastic motions
at t = 0 and fluid pressure at the conduit and reservoir walls at t = 0;
and (3) magma motions are calculated at t = 2δt using the boundary
conditions for velocities at the walls and magma motions in the
conduit and reservoir at t = δt . Steps (2)–(3) are repeated through
successive time steps until the end of the simulation. In Model I,
the pressure at the conduit orifice remains fixed at the atmospheric
pressure during the eruption. In Model II, an eruption starts when
the lid cannot sustain the fluid pressure in the conduit. This condition
occurs when the pressure at the top of the conduit exceeds the lid
strength. In our calculations, spurious pressure ripples leading to
unrealistically large estimates of pressure, can occur at the top of
the conduit when a strong shock with step-like onset impinges this
boundary (see Appendix B for details). The peak amplitude of the
ripples can exceed the mean amplitude of the reflected shock wave
by about 50 per cent at the lid so that the lid strength tends to be
overestimated in our calculations. However, this overestimation does
not affect the solid motions as discussed in more detail in Appendix
B. At the start of the eruption, the magma pressure at the conduit
orifice is set equal to the atmospheric pressure as in Model I. In both
models, we apply a sine function to gradually decrease the pressure
to atmospheric pressure over an interval of 0.12 s in order to prevent
numerical instabilities associated with an abrupt change of pressure
at the conduit orifice.

The time step δt is fixed by the numerical stability condition. For
the elastic medium, the numerical stability condition is given by
(e.g. Virieux 1986)

δt = csδds/(
√

2α) (cs < 1), (7)

where α is the P −wave velocity in the solid, δds is the grid size
for the elastic medium, and cs is a constant used to guarantee robust
numerical stability. We use cs = 0.2 to avoid numerical instabilities
that may originate at the corners of the conduit and reservoir. The
stability condition in the fluid is given by the expression

δt = c f δd f /(
√

2a) (c f < 1), (8)

where a is the acoustic velocity in the fluid, δdf is the grid size for
the fluid, and cf is a constant used to guarantee robust stability of
the numerical solution in the fluid. The acoustic velocity of magma
ranges over 162–165 m s−1 in the present study. Due to the presence
of gas bubbles in the liquid magma, the acoustic velocity of the
fluid is much lower than the P −wave velocity assumed for the crust
(3460 m s−1).

We assume a constant δt in both the solid and fluid and select
δdf = δds/nf so that the constant cf = nf csa/α (nf ≥ 1), where nf

represents the ratio of grid sizes. This procedure is similar to that
used by Chouet (1986) in calculations of the response of a fluid-filled
crack to a step in pressure.

The computational domain has dimensions of 5000 m in the
z-direction and 2500 m in the r-direction. We set nf = 4 in our cal-
culations and use a grid of 12.5 × 12.5 m in the solid, and 3.125 ×
3.125 m in the fluid. The grid interval of 12.5 m in the solid is
sufficiently small compared to the wavelengths of seismic waves
targeted by our model (e.g. the wavelength is 400 m for a shear
wave at the frequency of 5 Hz). While a much finer grid may be re-
quired in the fluid to accurately portray the sharp pressure transient

C© 2003 RAS, GJI, 153, 699–718



May 12, 2003 15:47 Geophysical Journal International gji1936

A numerical simulation of volcanic eruptions 703

expected to occur at the eruption onset, the 3.125 m grid is small
enough to adequately interpret the fluid motions in our simulations.
Our numerical tests indicate that nf = 4 is an optimum value for
simultaneous calculations of the fluid and solid motions, and that
using nf ≥ 8 induces high-frequency noise in the elastic response
of the solid as a result of abrupt stress variations occurring within
the space of a few grids in the solid. Using smaller grids in both the
fluid and solid would allow the resolution of sharp onsets in pressure
and high-frequency elastic motions, albeit at the expense of more
extensive computations.

As the spatial grid interval in the fluid is smaller than that used
in the solid, radial velocities and normal stresses in the solid at the
fluid–solid boundary are interpolated with cubic spline functions to
obtain the radial velocities and pressure in the fluid at this boundary.

As defined, our problem has axial symmetry (see Fig. 1), and
radial velocities in the fluid and radial displacements in the solid
always vanish on the vertical axis of symmetry r = 0. Accordingly,
the solution reduces to that of calculating the wavefields in the quar-
ter space r ≥ 0 and z ≥ 0. The absorbing boundary conditions of
Clayton & Engquist (1977) are used to set up the radiation condi-
tions at the edge of the domain in the r −direction, and stress-free
conditions are applied at the free surface z = 0.

The vertical displacement field in the solid (eq. 4) is represented
by the sum of two fields

ρs
∂2(uz0 + uz1)

∂t2 = ∂(τr z0 + τr z1)
∂r + ∂(τzz0 + τzz1)

∂z

+ (τr z0 + τr z1)
r + ρs g,

which can be split into

ρs
∂2uz0

∂t2
= ∂τr z0

∂r
+ ∂τzz0

∂z
+ τr z0

r
+ ρs g

and

ρs
∂2uz1

∂t2
= ∂τr z1

∂r
+ ∂τzz1

∂z
+ τr z1

r
,

where uz0 represents the static deformation due to the gravitational
force applied to the elastic body, and uz1 represents the field asso-
ciated with the pressurization of the reservoir–conduit system and
subsequent magma motion and eruption.

In our approach, the gravitational body force in eq. (4) is only used
to calculate the static deformation field due to this force, and this
term is removed from the equation when calculating the dynamic
field associated with the pressurization and eruption phases so as to
avoid spurious high-frequency numerical noise associated with this
term. Thus, we only calculate the displacements uz1 relative to the
static solution obtained for uz0, and apply radiation conditions at the
bottom boundary of the computational domain. Unlike our treatment
of the elastodynamics equations, the gravitational acceleration term
in eq. (1) describing the fluid dynamics remains present throughout
the various phases of calculations. As a result, this term pulls down
the fluid–solid system, thereby causing a mismatch in the total net
force balance. To verify that this mismatch does not cause unac-
ceptable errors, we computed solutions in which the gravitational
force remains present in both the solid and fluid throughout the cal-
culations. To prevent the gravitational force from pulling down all
of the solid in these calculations, the vertical displacement uz0 was
set to zero at the bottom boundary of the computational domain.
The base of the computational domain was set sufficiently far from
the base of the reservoir to prevent any bias in the calculated defor-
mation field associated with this bottom boundary condition. Once
the crustal deformation due to the gravitational force had converged

to an acceptable level of accuracy, we pressurized the reservoir–
conduit system and started the magma motion by removing the lid
or plug. Except for the presence of significant components of high-
frequency numerical noise, the simulated waveforms were found
to be quite similar to those obtained when the gravitational body
force is removed from eq. (4) during the pressurization and erup-
tion phases. This consistency between the two types of solutions is
expected because the mass of the fluid is negligibly small compared
to the mass of the solid body. Therefore, the gravitational term in
eq. (4) can safely be neglected when computing the dynamic elastic
motions resulting from the pressurization and eruption phases.

S I M U L AT I O N R E S U LT S

We assume the density of the liquid magma (2500 kg m−3), den-
sity of the solid (2700 kg m−3), depth at which vesiculation starts
(zm = 5000 m), and P- and S-wave velocities in the solid (3460 and
2000 m s−1, respectively). We examine eruptions from the same
shallow magma conduit–reservoir system (rc = 50 m, r v = 200 m,
�c = 400 m, �v = 200 m) for both Models. We further simulate
eruptions for Model II with an extended pipe (rc = 50 m, r v =
50 m, �c = 400 m, �v = 200 m) to examine the importance of the
lid strength at the conduit orifice on the fluid and elastic motions.

The reservoir assumed in our simulation is quite shallow com-
pared to reservoir depths of a few kilometers typically assumed for
volcanoes. The simulation of a deeper system, however, would re-
quire extensive computations because of the larger spatial extent of
the computational domain required for these calculations. Further-
more, processes associated with the opening and collapse phases
of the volcanic conduit would need to be accounted for in a deep
conduit system as the conduit is subjected to a high overburden
pressure in such a system. To avoid lengthy calculations associated
with deeper systems, the present study focuses on shallow conduit–
reservoir systems.

R E S U LT S F O R M O D E L I

We first investigate the general characteristics of magma motion,
crustal deformation, and seismic radiation based on simulation re-
sults obtained for Model I. Fig. 2 shows snapshots of the pressure
field in the magma. Prior to the eruption, the magma in the con-
duit and reservoir is overburdened by its own weight and by the lid
weight, so that the magma pressure increases with depth. When the
eruption starts at t = 0, the magma in the reservoir starts to move
upward in response to the pressure gradient established between the
reservoir and atmosphere. As shown in the snapshots from t = 0
to t = 9 s, a rarefaction wave propagates downward in the con-
duit. The propagation speed of the rarefaction wave is about 180 m
s−1, which is slightly higher than the fastest acoustic velocity in the
magma (165 m s−1).

The pressure in the reservoir gradually decreases with time, as
indicated by the change in colour in the reservoir from red, to yellow,
to light green. For a more detailed examination of small fluctuations
in magma pressure, we show in Fig. 3 the spatial variations of the
time derivative of pressure, ∂ p/∂t , in the reservoir. As seen in the
snapshots from t =3.7 to t =7 s, a region with high ∂ p/∂t repeatedly
appears at the bottom circular edge and near the center of the magma
reservoir, with a dominant period of about 2.5 s. As the reservoir
height and radius are both 200 m, and the acoustic wave velocity of
the magma at the reservoir depth is about 165 m s−1, this long-period
oscillation is interpreted as an acoustic oscillation of the magmatic
fluid in the reservoir.
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Figure 2. Snapshots of the pressure field in the magma conduit and reser-
voir in Model I.

Fig. 4 shows the temporal variations of pressure, p(t), and time
derivative of pressure, ∂ p/∂t , at several locations in the conduit and
reservoir. Fig. 4(a) clearly shows that the magma conduit and reser-
voir deflate almost exponentially for up to 30 s or longer. The time
constant of deflation is fixed by the ratio of the cross-sectional area
of the vent to reservoir volume. A large vent area and small reser-
voir volume result in a rapid deflation, while a small vent area and
large reservoir volume result in a slow deflation. Gradually decay-
ing oscillations with dominant periods near 2.5 s and shorter-period
overtones are observed in the plots of ∂ p/∂t (Fig. 4b) as the magma
pressure in the reservoir decreases over the 40 s interval. Although
the dominant oscillation period is close to 2.5 s, slight variations in
periodicities are noticeable at different locations. These variations
reflect the complex configuration of the conduit–reservoir system,
as well as pressure dependence of the acoustic speed in the magmatic
fluid. The fluid velocities (not shown here) display similar decay-
ing LP oscillations. These results indicate that the magma gradually
migrates upward in response to the pressure difference between the
magma reservoir and atmosphere, and that LP oscillations caused by
acoustic resonance of the reservoir are superimposed on the pressure
decay associated with mass transport.

Fig. 5 shows snapshots of the radial displacement field radiated
in the solid during the eruption. Deflation of the conduit propagates
downward from the top of the conduit to the reservoir. Measurements
of the group velocity of the waves indicate that the group velocity
decreases from the P-wave velocity (3460 m s−1) to about 100 m s−1

as the frequency decreases. These dispersion features are the result
of the dynamic coupling between the fluid and solid as theoretically
predicted by Biot (1952) for a fluid-filled pipe. Similar dispersion
characteristics were obtained by Chouet (1986) for a fluid-filled
crack.

Deflation motions are identified in the vertical and radial dis-
placements of the ground surface recorded in the near field of the
conduit–reservoir system (Fig. 6). These slow displacements (VLP
components) result from the gradual deflation of the magma reser-
voir. Oscillations with a period of about 2.5 s are observed super-
imposed on the VLP components of displacements due to deflation.
As distances from the vent increase, LP oscillations become more
evident (for example, compare the synthetics obtained at distances
of 100 and 1000 m). The period of 2.5 s is nearly equal to the reso-
nance period of the reservoir and the main axes of the particle orbits
at the free surface point toward the reservoir, indicating that these
LP signals result from acoustic resonance in the magma reservoir.

Fig. 7 compares the amplitude spectra of the vertical component
of velocity obtained at an epicentral distance r = 500 m for β = 0.5
and β = 1.0. The dominant frequency obtained for a magma char-
acterized by β = 0.5 (basalt) is slightly lower than that obtained for
a magma characterized by β = 1.0 (dacite). Note also the frequency
shifts and differences in excitations in the subdominant spectral
peaks associated with the two types of magma. Similar changes
in the spectral peaks are observed when the depth at which vesic-
ulation starts is varied. Since the acoustic velocity of the magma
a = √

∂p/∂ρ f varies with β and zm (see eq. 3), the resonant pe-
riod of the reservoir is strongly affected by the properties of the
magma. Simulations in which only the initial excess pressure, �P ,
is changed, show that the displacements and velocities are linearly
proportional to the initial excess pressure in the reservoir.

Results for Model II

We simulate the fluid and elastic motions for �P = 1 MPa and
σ lid = 2 MPa. Fig. 8 shows snapshots of the pressure field in the
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Figure 3. Snapshots of the spatial variations of the time derivative of pressure, ∂ p/∂t , in the magma reservoir in Model I.
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in the solid in Model I.
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at an epicentral distance of 500 m from the conduit axis.

conduit–reservoir system, and Fig. 9 illustrates the spatio-temporal
evolution of fluid pressure in the conduit and reservoir during the
initial pressurization and after the reservoir plug is removed. Notice
the compression shock propagating upward and rarefaction shock
propagating downward in the snapshots from t = 0.26 to t = 1.28 s
in Fig. 8. The propagation speed of the rarefaction shock (170 m
s−1) is slower than that of the upgoing compression shock (280 m
s−1). The wave front of the compression shock is a step-like signal
with amplitude of about 0.3 MPa. These characteristics of upgo-
ing and downgoing shocks are fully consistent with observations of
unsteady wave motions in shock tube experiments, and with numer-
ical simulations of shock waves in a conduit (Morrissey & Chouet
1997). Oblique shock waves, generated at the orifice of the reservoir,
are reflected several times in the conduit (see snapshots from 1.28
to 2.30 s in Fig. 8). Small fluctuations, visible for a few seconds
behind the step-like signals in Fig. 9(b), are caused by the superpo-
sition of oblique shock reflections and pressure oscillations in the
conduit–reservoir system. When the shock wave reaches the top of
the conduit, it causes a sudden build-up of pressure at this location.
This surge of pressure is the result of the compressibility of the fluid
and is discussed in detail in the following section. When the pressure
at the bottom surface of the lid exceeds the lid strength, the lid is
removed and the eruption starts, at which point the pressure at the
orifice is set equal to the atmospheric pressure (see pressure trace
at P01 in Fig. 9(b); see also Appendix B for details concerning the
implementation of this condition). The pressure wave reflected from
the conduit orifice then propagates downward into the reservoir (see
t > 1.8 s in Figs 8 and 9b). While the high-pressure waves travel-
ling in the conduit are dominant in this model, small-scale pressure
fluctuations associated with the resonance of the reservoir are also
observed as in Model I.
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plug.
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Fig. 10 shows snapshots of the vertical and radial displacement
fields in the solid. A large VLP deflation motion of the ground
surface starts with the initiation of magma motion and resulting
contraction of the reservoir. Superimposed on this VLP motion are
oscillatory motions with periods near 2.5 s due to the acoustic res-
onance of the reservoir. A pulse-like signal is also observed in the
ground response to the eruption in this model. This signal is radi-
ated by the sudden build-up of pressure at the vent resulting from the
impact of the high-pressure fluid upon the lid capping the conduit
orifice. This pulse is not observed in the seismograms obtained in
Model I.

The pulse-like signal excited by the pressure build-up at the vent
is conspicuous in eruptions from an extended vertical pipe (rc = 50
m, r v = 50 m, �c = 400 m, �v = 200 m, �P = 1 MPa). Fig. 11
shows snapshots of the fluid pressure in the pipe and radial velocities
in the solid during the interval t = 1.07 − 2.09 s. As illustrated in
the snapshots at t = 1.58 s, a pulse-like signal is excited at the
conduit orifice by the build-up of pressure in the volcanic pipe.
This signal is radiated in the solid. Fig. 12(a) compares vertical
and radial displacements at an epicentral distance r = 500 m for
different material strengths of the lid, σ lid, ranging between 1 and
0.2 MPa. The pulse-like signals are clearly observed for σ lid =
1 MPa, however the amplitude of this signal becomes smaller as
the strength of the lid decreases. This means that the seismograms
contain information about the boundary condition at the conduit
orifice, and that the material strength of the lid can be estimated
from the amplitude of the pulse-like signal. The particle orbits for
the pulse display retrograde elliptical motions characteristic of a
Rayleigh wave (Fig. 13). Note that the overall characteristics of the
waveforms in Fig. 12 are distinct from those seen in Fig. 10. These
results indicate that the seismic waves are markedly affected by the
system of forces resulting from the conduit–reservoir configuration
considered.

Fig. 12(b) shows the vertical velocity of the fluid at P01 (see
Fig. 1). The initial velocity varies from 270 to 340 m s−1 for differ-
ent lid strengths. Note, however, that these velocities are strongly
dependent on the boundary condition applied at the vent, which ar-
bitrarily sets the fluid pressure equal to the atmospheric pressure at
the start of the eruption in this model. Following this initial phase,
the vertical velocities of the fluid become essentially independent of
the applied boundary condition, indicating that the subsequent flux
of magmatic fluid from the vent is independent of the lid strength.

D I S C U S S I O N

Mechanism of high-pressure build-up at the conduit orifice

Our simulation results for Model II display an abrupt increase of
pressure at the vent, where the pressurized high-velocity fluid mi-
grating upward from the reservoir is forced to a sudden stop. These
results indicate that a pressure build-up exceeding the incident wave
pressure by more than twofold can be achieved at the top of the con-
duit. This large pressure amplification is the result of the nonlinear-
ity of the compressible fluid dynamics. Fig. 14 provides a simplified
representation of the fluid motion in the top region of the conduit. A
fluid with Mach number Mi and pressure pi is propagating upward,
forming a shock front with Mach number Ms propagating ahead of
the fluid (Fig. 14a). The fluid reaches the lid capping the conduit
where it is reflected, forming a shock wave propagating downward
with a Mach number Mr (Fig. 14b). We denote as pr the pressure
in the fluid behind the downgoing shock wave.
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Figure 10. (a) Vertical and (b) radial displacements (in units of 10−9 m)
at the free surface in Model II. Numbers at the left of each trace represent
epicentral distances from the conduit axis (in units of m). The initial phase is
excited by the removal of the plug at the reservoir outlet, and the following
LP signals result from the acoustic resonance of the reservoir. The pulse-like
signals are Rayleigh waves excited by the high-pressure build-up at the vent.
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t = 1.07 − 2.09 s in Model II. The maximum fluid pressure in each snapshot
is indicated at the bottom right of the volcanic pipe.
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(in units of 10−9 m) at an epicentral distance of 500 m. (b) Vertical fluid
velocity at the vent. An extended pipe with radius of 50 m and length of
600 m is assumed in this calculation (rc = 50 m, rv = 50 m, �c = 400 m, �v
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The fluid behaviour in this simplified model is expressed by the
Rankine-Hugoniot equation. The Rankine-Hugoniot equation gives
the pressure ratio pr/pi in the form (e.g. Anderson 1982; Matsuo
1994)

pr

pi
= 2γ Mr

2 − (γ − 1)

γ + 1
, (9)

where γ is the ratio of the specific heat of the fluid at constant
pressure versus specific heat of the fluid at constant volume. The
Mach numbers Mr, Ms, and Mi are related to each other by

Mr =
√

2γ Ms
2 − (γ − 1)

(γ − 1)Ms
2 + 2

, (10)

and

Mi = (
Ms

2 − 1
) [(

γ Ms
2 − γ − 1

2

) (
γ − 1

2
Ms

2 + 1

)]− 1
2

.

(11)

Fig. 15 illustrates the relation between Mi and the pressure ratio,
pr/pi, for γ = 1.01 − 1.4. These results show that the pressure
increases by about 70 per cent when a fluid with Mi = 0.5 impacts
the lid. For supersonic waves with Mi = 2 impacting the lid, the
pressure increases by more than 600 per cent.

The basic characteristics of the simulation results obtained with
Model II are in agreement with the theoretical prediction, although
significant differences are noted between model and theory. For ex-
ample, the downgoing high-pressure wave in our model (see Figs 9
and 11) is small and does not display a step-like onset as in the
schematic illustration in Fig. 14(b). Rather, it shows marked fluc-
tuations of amplitude at P02 to P04. These differences originate in
the triggering condition used for the eruption, and geometry of the
reservoir. In our simulation the lid is removed and the pressure at the
orifice of the conduit is set to gradually decrease to the atmospheric

pressure over an interval of 0.12 s when the pressure exceeds the
lid strength. Pressure fluctuations induced by acoustic resonance in
the reservoir then affect the fluid motions in the conduit. To obtain a
reflected shock wave similar to the theoretical prediction and better
compare our numerical results with the theory, we simulate the fluid
motion in an extended pipe (rc = 50 m, r v = 50 m, �c = 400 m,
�v = 400 m) with infinite lid strength (σ lid = ∞). Fig. 16 shows
the temporal variation of pressure beneath the conduit orifice. The
initial excess pressure �P is 1.0 MPa. The downward propagating
shock wave reflected at the lid displays a clear step-like front in
agreement with the schematic illustration in Fig. 14. The large over-
shoot of pressure at P01 does not fit the theoretical prediction but
is the result of numerical artefacts in our finite-difference scheme
(see Appendix B). We further simulate the fluid motions for �P
= 0.1, 0.2, 0.5, 1.5 and 2.0 MPa, and estimate the ratios of pr/pi

and incident Mach number Mi at P02 (50 m below the lid) for each
�P. The results are shown by solid circles in Fig. 15. The numerical
results coincide with the theoretical values for γ = 1.01. Therefore,
we conclude that a large build-up of pressure can occur just beneath
the vent in a volcanic eruption. It is worth noting here that this pres-
sure pulse is not detectable by geodetic measurements because of
its short duration.

Comparison between simulations and field observations

We have examined the magma motions, crustal deformation, and
seismic wave radiation associated with two models of a volcanic
eruption. Many seismograms associated with various types of erup-
tions have been observed at different volcanoes, which allow a com-
parison between our simulation results and field observations.

Both Models I and II predict the LP seismic waves that are of-
ten detected in seismic measurements performed in the vicinity of
erupting volcanoes. These waves become more evident in the far
field. Changes in the dominant period of eruption tremor have been
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Figure 14. Schematic illustration of the fluid motion at the conduit orifice.
The conduit orifice is sealed by a lid.

observed at several volcanoes (e.g. Chouet et al. 1997; Hagerty et al.
1997). Slight changes in the dominant period of the signal are pre-
dicted by our model, due to a slight change in the acoustic velocity
of magma with depth. However, large changes in the dominant pe-
riod can not be accounted for by our model. Using a more realistic
constitutive relation between fluid pressure and density, in which
the dynamics of the vesiculation process is fully accounted for, may
improve our model.

In both Models I and II, VLP motions originate in the deflation
of the reservoir–conduit system. VLP signals have been observed at
Mount St Helens (Kanamori et al. 1984), and Mount Tokachi and
Mount Asama (Nishimura & Hamaguchi 1993), and have been inter-
preted as the result of a reaction force associated with an eruption
(Kanamori et al. 1984). Recent broad-band seismic observations
have shed additional light on the spatio-temporal properties of the
sources of seismic waves associated with explosions. For example,
Tameguri et al. (2002) demonstrated that the dominant signals of
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Figure 15. Relation between the Mach number of the incident fluid and
pressure in the shock generated by reflection at the conduit orifice. The ver-
tical scale is normalized by the pressure of the incident wave. The simulated
results are shown by solid circles (see text for explanations).

explosion earthquakes at Sakurajima Volcano are Rayleigh waves
originating from a source located immediately beneath the vent.
This Rayleigh wave source is activated about 1 s after an initial ex-
plosion occurs at a depth of a few kilometers beneath the vent. A
VLP inflation preceding an eruption by a few tens of second has also
been observed to accompany vulcanian explosions at Popocatepetl
Volcano, Mexico (Arciniega-Ceballos et al. 1999). The basic char-
acteristics of Model II, which show an initial motion of the fluid and
seismic wave radiation at depth prior to an eruption, and subsequent
excitation of a Rayleigh wave at the vent at the eruption onset, are
consistent with these observations.

Although Vulcanian-type eruptions often accompany explosion
earthquakes, many eruptions are dominated by eruption tremor. For
example, at Mount St Helens the first catastrophic blast at 0830
on 1980 May 18 was preceded by strong explosion earthquakes
(e.g. Kanamori & Given 1983), while the eruption starting three
hours later was not explosive but characterized by a sustained flux
of fragmented materials causing eruption tremor. Sakurajima Vol-
cano is famous for its Vulcanian-type eruptions, but it sometimes
shows Strombolian-type eruptions accompanying BL-type earth-
quakes. Based on analyses of explosion and BL-type earthquakes,
Iguchi (1995) suggested that the boundary conditions at the vent
may control the type of eruption at Sakurajima. Explosion earth-
quakes (Vulcanian-type eruptions) mark the destruction of lava
domes obstructing the vent, and BL-type earthquakes (Strombolian-
type eruptions) occur when the conduit is filled with fluid magma
and the vent is unobstructed. These observations suggest that either
Model I, or Model II with a small σ lid, may both represent ‘weak’
eruptions.

Other considerations

Our models should only be viewed as seminal models because of
the simplifying assumptions we have used to describe a volcanic
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Figure 16. Temporal variations of p(t) at locations P01 through P06 along
the conduit axis. The large overshoot of pressure at P01 is the result of
numerical artefacts.

eruption. In these models, the pressure at the vent is arbitrarily set
equal to the atmospheric pressure during an eruption. This assump-
tion does not take into account the overburden pressure due to the
volcanic plume, which is expected to fluctuate as the eruption pro-
ceeds. The accompanying fall-back of volcanic materials from the
plume into the conduit provides an additional feedback mechanism
that will induce pressure fluctuations at the vent. The flow behaviour
in the atmosphere will affect the underground flow of magma and
control the long-period characteristics of the observed eruption sig-
nals. To incorporate such effects in future eruption models, the flow
in the atmosphere will need to be calculated simultaneously with the
fluid dynamics in the conduit and reservoir, and elastodynamics in
the solid. Furthermore, the configuration of the magma conduit and
reservoir we have used may be too simplistic. An irregular shape
for the reservoir system, in which the cross-sectional area of the
conduit and reservoir are varied, may be more realistic as suggested
by the complex distributions of dyke widths observed in volcanic
fields. As pointed out by Wilson et al. (1980), the conduit may be
eroded by the flow of magma. Erosion may be especially important
in the shallowest part of the conduit. Conduit and reservoir collapses
may also occur in response to mass withdrawal from the system. As
such collapses occur mostly during the late stages of eruptions, our
simulation results are still useful for an understanding of the overall

characteristics of an eruption, and are especially adequate to de-
scribe the process leading up to and acting during the initial phase
of an eruption.

We considered an inviscid fluid under the assumption that strong
vesiculation of volatile gases will significantly reduce the viscosity
of the magma (e.g. Wilson et al. 1980). Other types of magma flow,
such as the slug flow discussed by Chouet et al. (1999); Chouet et
al. (2003), and fragmentation process of magma in the conduit, are
not described by eq. (3) and are not a target of our simulations. Al-
though our calculations are strictly limited to the simplified aspects
of an eruption, we believe that the overall characteristics of magma
motions in the shallow reservoir, and seismic wave radiation excited
by the eruption are well reproduced.

C O N C L U S I O N S

We have used the finite difference method to calculate the magma
motions, seismic radiation, and crustal deformation associated with
a volcanic eruption. Our main results are summarized as follows.

(1) Magma pressure gradually decreases with time as the magma
migrates upward in response to the pressure difference between the
magma reservoir and atmosphere. LP oscillations of the magma
reservoir and conduit are excited by acoustic resonance of the
conduit–reservoir system during the eruption. The dominant pe-
riod of oscillation depends both on the size of the conduit–reservoir
system and magma properties. These VLP and LP oscillations are
detected in the displacement field measured at the free surface.

(2) The magmatic fluid is highly pressurized just beneath the
vent when the fluid abruptly migrates upward and is instantaneously
stopped by a lid blocking the conduit orifice. This build-up of pres-
sure is detected as a single pulse-like Rayleigh wave in the seismo-
grams, a feature similar to those observed in actual seismograms of
explosion earthquakes.

(3) The material strength of the lid at the conduit orifice plays an
important role in the generation of seismic waves. A strong lid leads
to a large-amplitude single-pulse explosion earthquake. A weak lid
leads to seismograms dominated by LP oscillations and gradually
changing crustal deformations.
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Fig. A1 illustrates the grid architectures used in the fluid and solid.
The intersections of the thin lines represent the grid nodes at which
the fluid densities, pressures, and velocities are calculated. Plain
symbols represent grid nodes where elastic stresses and the two
elastic moduli are defined, and open symbols represent grid nodes
where elastic displacements, body forces and density are calculated.
The grid nodes located at the boundary between the fluid and the
solid are

i = ic and j 0 ≤ j ≤ j t, l = lc and m0 ≤ m ≤ mt − 1

for the conduit wall,

i = iv and j t ≤ j ≤ jb, l = lv and mt ≤ m ≤ mb − 1

for the reservoir side wall,

ic ≤ i ≤ iv and j = j t, lc ≤ l ≤ lv − 1 and m = mt

for the reservoir roof,

i 0 ≤ i ≤ iv and j = jb, l0 ≤ l ≤ lv − 1 and m = mb

for the reservoir bottom.
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Figure A1. Grid architectures of the fluid and solid used in our finite-difference simulations.
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The algorithm used to calculate the fluid motions is that of Mac-
Cormack (Anderson 1995). Consider the variables, ρ f , vr, and vz at
gridpoint (i, j). Assuming the flow-field at each gridpoint is known
at time t, we proceed to calculate the flow-field variables at the same
gridpoints at time t + δt . This is obtained from

ρ t+δt
f,i, j = ρ t

f,i, j +
(

∂ρ f

∂t

)
av

δt,

vt+δt
r,i, j = vt

r,i, j +
(

∂vr
∂t

)
av

δt,

vt+δt
z,i, j = vt

z,i, j +
(

∂vz
∂t

)
av

δt, (A1)

where (∂ρ f /δt)av , (∂vr/δt)av , and (∂vz/δt)av are representative
mean value of (∂ρ f /δt), (∂vr/δt), and (∂vz/δt), respectively, be-
tween times t and t + δt . These mean values are expressed as(

∂ρ f

∂t

)
av

= 1
2

[(
∂ρ f
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)t

i, j
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(A2)

The first and second terms in the right-hand sides represent a ‘pre-
dictor step’ and ‘corrector step’, respectively. From eqs (1) and (2)
the predictor steps for each parameter are expressed by(
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where
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where urc,ic, j and urv,iv, j represent the radial displacements at the
conduit and reservoir walls, respectively, uzt,i, j t and uzb,i, jb are the

vertical displacements at the reservoir roof and reservoir bottom,
respectively, and δr f and δzf represent the grid intervals in the r and
z directions, respectively (in our calculation δr f = δzf = δd/4). The
pressure at each grid node, pt

i, j , is calculated from ρ t
f,i, j using eq.

(3). Predicted values for ρ f , vr, and vz are obtained from the first
two terms of a Taylor series:
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By substituting the predicted values ρ f , vr , and vz into eqs (1) and
(2) and replacing the spatial derivatives with backward differences,
we obtain the corrector steps:
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The fluid variables at the conduit and reservoir walls are linearly
extrapolated from the flow field values calculated at internal grid
nodes. By representing all the fluid variables (i.e. =ρ f , vr, or vz) as
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f , the fluid variables at the boundaries are obtained as

fic, j = 2 fic−1, j − fic−2, j, for j0 ≤ j ≤ j t,

fiv, j = 2 fiv−1, j − fiv−2, j, for j t ≤ j ≤ jb,

fi, j t = 2 fi, j t+1 − fi, j t+2, for ic ≤ i ≤ iv,

fi, jb = 2 fi, jb−1 − fi, jb−2, for i0 ≤ i ≤ iv. (A8)

At the conduit orifice the pressure is set equal to the atmospheric
pressure and the other fluid variables are extrapolated as

fi, j0 = 2 fi, j0+1 − fi, j0+2, for i0 ≤ i ≤ ic. (A9)

The explicit forms of the finite-difference equations representing
the equations of motion in the solid (eq. 4) are given by
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+ ρs,l,m g, (A10)

where the subscripts l and m represent the indices of unit cells, and
δr and δz represent the unit material cell sizes in the r and z directions,
respectively (in our calculation δr s = δzs = δd). The stress-strain
relations (eq. 5) become

τ t
r z,l,m = µl,m

(
ut
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+ ut
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where

�l,m = ut
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+ ut
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.

The fluid and elastic variables are dynamically coupled at the fluid–
solid boundary by applying the continuity of velocities in the fluid
and solid, and continuity of fluid pressure and stress in the solid, at
the conduit and reservoir boundaries. As the grid size in the fluid
is one quarter of the grid size used for the solid in our model, we
interpolate the elastic displacements at the fluid–solid boundary with
cubic spline functions and derive the velocities in the fluid from

vt
r,ic, j = ut

rc,ic, j − ut−δt
rc,ic, j

δt, for j0 ≤ j ≤ j t,

vt
r,iv, j = ut

rv,iv, j − ut−δt
rv,iv, j

δt ,
for j t ≤ j ≤ jb,

vt
z,i, j t = ut

zt,i, j t − ut−δt
zt,i, j t

δt ,
for ic ≤ i ≤ iv,

vt
z,i, jb = ut

zb,i, jb − ut−δt
zb,i, jb

δt ,
for i0 ≤ i ≤ iv, (A12)

where urc,ic, j and urv,iv, j represent radial displacements at the con-
duit and reservoir walls interpolated from ur,lc,m and ur,lv,m , respec-
tively, and uzt,i, j t and uzb,i, jb represent vertical displacements at
the roof and bottom of the reservoir interpolated from uz,l,mt and
ur,l,mb, respectively. The fluid pressure and stress field in the solid are

coupled via the relations

τrr,lc,m = pic, jm,

τzz,lc,m = 2τzz,lc+1,m − τzz,lc+2,m,

τφφ,lc,m = 2τφφ,lc+1,m − τφφ,lc+2,m,

τr z,lc,m = 0, for m0 ≤ m ≤ mt − 1,

τrr,lv,m = piv, jm,

τzz,lv,m = 2τzz,lv+1,m − τzz,lv+2,m,

τφφ,lv,m = 2τφφ,lv+1,m − τφφ,lv+2,m,

τr z,lv,m = 0, for mt ≤ m ≤ mb − 1,

τrr,l,mt−1 = 2τrr,l,mt−2 − τrr,l,mt−3,

τzz,l,mt−1 = pil, j t,

τφφ,l,mt−1 = 2τφφ,l,mt−2 − τφφ,l,mt−3,

τr z,l,mt = 0, for lc ≤ l ≤ lv − 1,

τrr,l,mb = 2τrr,l,mb+1 − τrr,l,mb+2,

τzz,l,mb = pil, jb,

τφφ,l,mb = 2τφφ,l,mb+1 − τφφ,l,mb+2,

τr z,l,mb = 0, for l0 ≤ l ≤ lv − 1,

τr z,lv,mb = 0,
(A13)
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Figure B1. Temporal variation of p(t) at grid nodes along the conduit wall
close to the conduit orifice. The vertical distances from the orifice are indi-
cated at the left of each trace.
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where il, jm denote the grid nodes in the fluid that match the grid
nodes in the solid at the fluid–solid boundary.

A P P E N D I X B : F L U I D M O T I O N AT T H E
C O N D U I T O R I F I C E

As indicated in eq. (A8), the pressure at the conduit orifice is ex-
trapolated from the pressure at the nearby two gridpoints in our
finite-difference scheme. This extrapolation algorithm works well
especially when the fluctuations of pressure between nearby grid-
points are small. However, unrealistic waves may be produced when
an abrupt change of pressure occurs at the conduit orifice. In Model
II, the shock with step-like onset impinging the lid induces artificial
ripples near the wave front of the reflected shock. Fig. B1 shows
plots of the fluid pressure at grid nodes along the conduit wall close
to the lid in an extended pipe (rc = 50 m, r v = 50 m, �c = 400 m, �v

= 400 m) with �P = 1 MPa. We observe ripples with a peak am-

plitude exceeding the mean amplitude of the reflected shock wave
by about 70 per cent at the lid. In this case, therefore, the strength of
the lid is overestimated by about 70 per cent in absolute value. The
peak amplitude of such ripples decreases to 20 per cent of the mean
amplitude of the reflected shock wave for the case of �P = 0.1
MPa. These ripples lead to an error in our estimation of the pressure
condition leading to the removal of the lid and start of the eruption
in Model II, but do not affect the solid motions because the ripple
amplitudes decrease rapidly with increasing distance from the lid.
For example, the peak ripple amplitude exceeds the mean amplitude
of the reflected shock by 20 per cent at a depth of 6.25 m in Fig. B1.
The stress σ rr in the solid near the conduit orifice is coupled with
the fluid pressure p at grids located 6.25 m and 18.75 m from the
lid. Ripples are relatively weak at these locations and their effect
in the elastodynamics is trivial. The ripples can also be reduced via
the expedient of using a smaller grid interval δdf , however, at the
expense of more extensive computations.
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